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An analytic solution is obtained of the problem about the dynamics of the solidi- 
fication of alloys of circular transverse section which takes account of the pro- 
gress of the two-phase zone boundaries in time. 

A simplified method based on the assumption of the existence of a smooth phase interface 
where the physical properties of the solidifying substance changes by a jump is used exten- 
sively in the analysis of ingot solidification [i, 2]. Meanwhile, the majority of industrial 
alloys crystallizes in the temperature range Tliq-Tsol. As is shown in Fig. i, the presence 
of a finite (nonzero) crystallization temperature band for a nonuniform temperature distribu- 
tion over the ingot section will result in the existence of a two-phase zone (melt, crystals) 
where the relative quantity of solid phase (~ = Vs/V 0) changes from zero (for T = Tli q) to 
one (for T = Tsol). Extension of the Ivantsov-Veinik method [i, 2] to the case of ingot 
crystallization in the Tliq-Tso I temperature band is performed in [3] for the case of solidi- 
fication of plane ingots for a boundary condition of the first kind (Tsu r = const) on their 
cooling surface. A solution is presented below for an analogous problem for ingots of cylin- 
drical shape with circular cross section for a boundary condition of the third kind (heat 
transfer from the environment according to the Newton convection law) on their cooling sur- 
face. 

We use the following assumptions: a) the thermophysical characteristics of the solidify- 
ing alloy (9, C, X, ~ ) are assumed invariant; b) a stabilized mode of ingot cooling is con- 
sidered, when the temperature T c of the cooling medium and the coefficient of heat elimina- 
tion on the ingot surface ~ are assumed invariant; c) the ingot crystallization front is a 
spatially distributed two-phase zone within whose limits the content of the solid phase is 
determined uniquely by the local temperature and can be reflected by a third degree poly- 
nomial [3]: ~ = 610 + 6202 + 6~03, where O = (Tliq-T)/(Tliq-Tc). 

If the initial temperature of the ingot exceeds the solidus temperature, then the 
solidification process can be separated into three stages: i) from the beginning of cooling 
to the time of achievement of the solidus temperature on the ingot surface; 2) from the end 
of stage i) to the time of achievement by solidification front r = b of ingot axis; 3) from 
the end of stage 2) to the time of the reduction of the temperature on the ingot axis to the 
solidus temperature (Fig. 2). 

The equation of nonstationary heat conduction for the ingot two-phase zone has the form 
[3] 

pC OT --_ div (% grad T) Jr 9 ~  O~ a-T dr" (1) 
where  t h e  l a s t  componen t  on t h e  r i g h t  s i d e  c h a r a c t e r i z e s  t h e  i n t e n s i t y  o f  t h e  p h a s e - t r a n s l -  
t i o n  heat source, which is directly proportional to the local rate of solidification. In par- 
ticular, for a temperature field with axial symmetry, (i) takes the form 

9C OT 1 0 (% OT) O, 
a---t- r OT ~ + ~ Ot (2) 

L e t  us  s u p p l e m e n t  ( 2 )  w i t h  i n i t i a l  and b o u n d a r y  c o n d i t i o n s  

t = 0, T = T  ; ( 3 )  

OT 
r = O, = O; 

0r (4) 
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Fig. i. Diagram of the location of the two-phase 
zone bounded by liquidus (b) and solidus (r c) iso- 
therms in the solidifying ingot section. 

r = R, --s OT 
Or = a ( ~ u r  To). (5)  

The s o l u t i o n  o f  t h e  p ro b l em d e f i n e d  by ( 2 ) - ( 5 )  i s  by t h e  method o f  i n t e g r a l  r e l a t i o n s  a c c o r d -  
ing  to [4]. We multiply both sides of (2) by rdr and integrate with respect to the coordinate 
r between the limits 0 and R; we consequently obtain the relationship 

dQdt = - -  ~ ( R " OTOr )!~=R' (6)  

where 

R R 

Q = p~,~ .! , 'rdr - -  pC .t' Trdr. ( 7 ) 
0 0 

Taking account of the stabilized nature of ingot cooling, we take the following tempera- 
ture distribution over its section: 

for the cooling stages i) and 2) 

T(r) = Tit q (Tliq -- To) (R -- b) r b "'~ n% ('~--~b ) f~ b < r ~ R' 
R--b+- (8) 

for the cooling stage 3) 

T (r) = Twl -- 

T ( r ) = T l i  q =cons t  for O~<r~<b; 

(Tsol -- Te) ( R - -  re) 
nL 

R--r~ + -- 
O~ 

( )n 
r - -  rc for rc <~ r ~ R, 

R - -  f c 

(9) 
rm 

T (r) = Tso t -+- (Tli q - ~ol ) r___yc 1 r m for 0 ~< r ~< ro  
rc, C 

where rcl is the coordinate of the solidus isotherm at the beginning of the ingot cooling 
stage 3). It is easy to see that (8) and (9) satisfy the boundary condition (5) on the in- 
got surface being cooled. The values of the exponents n and m are assumed constant for each 
cooling stage. The numerical solution of the problem (2) and (5), executed by applying a 
mesh method and an electronic computer, yields a foundation for selecting the exponents n 
and m equal to 1 • 0.05 and 3 • 0.25 respectively. Substituting the coordinate functions 
(8) and (9) into (7) and then into the integral relation (6), we obtain an ordinary differen- 
tial equation whose integral connects the liquidus and solidus isotherm coordinates (b, r c) 
with the time t. In dimensionless form the solution of the problem has the form: 
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for stage i) 

where 

for stage 2) 
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Fig. 2. Schematic temperature distribution 
in the ingot in the third stage of cooling. 

Fo = Bx (1-- z) + B2(1-- zZ) + Bn(1-- z3) + B~ (1 q- l ~ _ z )  

+ B5 
1 - - z  + B 8 2 ( N  + 1 ) z - - z Z - - ( t  + 2N) 

1 + N - - z  (1 +N--z )  2 

B~ = 1 (1 -~ Ka[3x) - -  -]- -{- KI[~ 
n n + l  n-+-2 2 n - - 1  

2 - - 2 N  z ) ( 3N2- , -2N--1  3 N 2 + N - - 2 ) ] .  
-k- 2n + 2 -t- Ka[33 3n + 1 3n "4- 2 ' 

t32 = ~ n  (1 + KI[~I) n + 1 n -4- 2 -4- K~2 2n -4- 1 

, ) 
2 n + 2  -k-Kl[~3 3n-+- 1 3 n + 2  ' 

+ 

Ba--  2 [ ( l + K ~ f i 0 (  1 I ) ( 1 
3----n n - ~ l  n + 2  +K1132 2n-4- 1 

1) (1 1)]. 
2 n + 2 -  +K1~3 3 n + l  3n -}- 2 ' 

N2 [ ( N + I  N ) (4N--}-3 
B~ -- (1 -4- KI~I) - -  - -  + K1~2 

n n + l  n + 2  2 n + l  

2 n + 2  + K~[~ k. 3n + 1 3 n + 2  ' 

B5 = 2K1 [32 -}- [~3 ; 
n 2n-k- 1 2n-4- 2 3 n +  1 3 n + 2  

B6= 3 NZ K,~a(N-k-1 N 1. 
2 n 3n-4- 1 3n-4-2 

l + N - - z  
Fo = C1 (Zo - -  z) + C2 (zo 2 - -  z) + C3 (zo 3 - -  z) + C~ In 1 -q- N - -  Zo' 

( i 0 )  

(ii) 
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Fig. 21. Progress of the front of the two-phase zone i - Zli q (solid 
lines) and change in its width Zso I - Zli q (dashes) during solidifi- 
cation of a cylindrical ingot for the case K I = 1 and for Oso I = 0.2 
(a) and 0.4 (b). 

where 

Cl= 1 [ 2-1 -N--N= __ ]" 
n n--k2 + K~(N+ 1)2(d2 2dl) , n.-]- 1 

C2=~.n Ka(N_l_l)(l+3d~__4da)_.}_ N + 3  N + 4  l .  
" n--kl n + 2  ' 

C3 - -  3~ ~ n -? 1 n § 2 ' 

N2 ( N §  N) C~-- 
n n +  1 n -52  , 

z o = b0/R is the initial relative coordinate of the liquidus isotherm for stage 2); 

~3@ sol 2 3 _ _  ~30 sol 13=Osol 2 1 [ ~ , e s o l  ff  [~2" sol �9 " dz - -  1 q-- ~ O s ~  @ + ; 
d : t = O s ~  n-+-2 2nq -2  { 3n+2 ' =@so l \  n @ l  2 n + l  3 n - k l  

for stage 3) 

Fo=D~(z , - -Zc ) - [ -D2[z~- -z  2)q-DS(z,-zr 3 , D~(z 4-zr 'kDs(z~--z~)+Do(z 6-zr 1 §  

I @ N - - Z l  

where 

D I = - - n l  ( N 2 -  I -  n=- 1 + '  2-]-N--Nz ) " n - l - 2  ' 

1 [ N+3 N+4 AI(N-&I)]; 
D2 ~ n--t- 1 n - t - 2  

1 [2 ( 1 1 .)-~A~(N-t- 1)--A,];  
D'g = -~n  n--t- 1 n - k 2  

1 1 [A,~--A4(N+ 1)]; D G -  A~ . V~ : ' -~n [A2--As(N+ 1)]; D~ = ~ 6n ' 

N2 ( N q - 1  N )  DT-- - -  ; 
n n--kl n + 2  

A1 = K___.~_~ (_  1 + plOsol+ [~2e~o, + 1~3G~o0; 
1 - -  @so1 

Az = 3a~Os~ [I -k KI  (,6~ -I- 2~20so! --I-- 3[~3@~oi.)]; 
z~ (1 - -  Oso 1) 

2 5c,~K~,~O ~ol rc A,q-- 4b'~K'Os~ ~R + 3~sOsol); A~ = ; ze -- " 
d(-i- o-- o,Z ' 

(12) 
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TABLE i. Duration of the Separate Stages of 
Ingot Solidification Expressed by the Similarity 
Number Fo i (i = i, 2, 3) and Total Duration of 
Solidification (Fo E = Fo I + Fo 2 + Fo3) of a 
Cylindrical Ingot for Different Values of the 
Number Bi for ~i = 0-i, k = i 

Bi O SOl Fo, Fo~ Fo3 Fo 

10 

0 
0,2 
0,4 
0 
0,2 
0,4 
0 
0,2 
0,4 
0 
0,2 
0,4 
0 
0,2 
0,4 

0,161 
0,500 

0,041 
0,146 

0,009 
0,037 

0,001 
0,007 

0 
0 

0,788 
0,360 

0,638 
0,512 

0,503 
0,473 

0,401 
0,382 

0,317 
0,321 

0,222 
0,783 

0,121 
0,395 

0,080 
0,249 

0,060 
0,178 

0,044 
0,134 

0,927 
1 ,!71 
1,643 
0,646 
0,800 
1,053 
0,491 
0,592 
0,759 
0,388 
0,462 
0,567 
0,306 
0,361 
0,455 

z I = rcl/R is the relative coordinate of the solidus isotherm at the beginning of stage 3); 

1 (  2 1 ) ' b i n  1 2 + 1 . 
a , n = - - ~ - _ m + 2  _ '  = 2 m + 2  2 m + 2  

1 3 3 1 cm= ~ - +  - -  - - + - - ;  
m-}-2  2 m + 2  3m --5 2 

KI= '~ ; N =  __n., B i =  ,zR 
C (Tli q -- Te) Bi )~ 

Selecting the coefficients 61 - 63 by different methods, we can reflect the specific 
form of the phase diagram in the analyses. In the simplest case of parallel liquidus and 
solidus lines, we take 61 = i/Osol, 62 = 6s = 0. The physical meaning of this assumption 
is that the heat of the phase transition and the enthalpy of the melting are distributed uni- 
formly within the crystallization band Tliq-Tsol. As an example of utilization of (i0)-(12), 
graphs are represented in Fig. 3 for the progress of the two-phase zone front in a solidify- 
ing melt, as is also the change of its relative width in time for a given similarity number 
K I = i; Bi = i; 2; 4; 10 and m; @sol = 0.2 and 0.4. As is seen from the figure, the two- 
phase zone width grows continuously during stages i) and 2), reaches the maximum at the be- 
ginning of stage 3), and then diminishes rapidly to zero. Comparison of the graphs shows 
that as the alloy crystallization range increases (i.e., complex @sol) the total duration 
of ingot solidification grows (see the table also). A substantial increase in the design 
duration of the ingot solidification with extraction of the heat of phase transition taken 
into account in a certain finite temperature range Tliq-Tso I as compared with the traditional 
formulation of the Stefan problem (the phase transition occurs by a jump at a certain temper- 
ature T = Tcr) justifies utilization of (10)-(12), whichhave a sufficiently awkward form. On 
the other hand, the method elucidated above represents the possibility of determining the 
two-phase zone width Zsol-Zli q by a design means, depending on the specific ingot cooling 
conditions and the thermophysical properties of the alloy. This circumstance is of no little 
importance since defects (porosity, impurity segregation) originate in the two-phase zone, 
whose quantity depends, in a governing manner, on the duration of the alloy residence in the 
two-phase state [5]. 

NOTATION 

T, temperature; Tc, temperature of the cooling medium; Tliq, Tsol, equilibrium values 
of the liquidus and solidus temperatures of the solidfying alloy; t, time; r, a coordinate; 
p, C, ~, ~, mass density, specific heat, heat conductivity, and melting enthalpy coefficients 
of the alloy; Vs, Vs specific volumes of the solid and liquid phases within the control volume 
V 0 of the two-phase zone (V 0 = V s + Vs ~, relative quantity of solid phase; b and r c, coordin- 
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ates of the liquidus and solidus isotherms; Zli q = b/R; Zso I = rc/R; Fo = at/R 2, Bi = ~R/X, 
K I = ~/C(Tso I - Tsol) , similarity numbers (dimensionless time, cooling criteria, and thermo- 
physical properties of the alloy), a = h/pC. 

i. 
2. 
3. 
4. 
5. 

LITERATURE CITED 

G. P. Ivantsov, Trudy Tsentr. Nauchn.-Issled. Inst. Chern. Metall., No. 25, 60-104 (1953). 
A. I. Veinik, Theory of Ingot Solidification [in Russian], Moscow (1960). 
Yu. A. Samoilovich, Casting Formation [in Russian], Moscow (1974). 
L. S. Leibenzon, Izv. Akad. Nauk SSSR, Set. Geograf. Geofiz., No. 6, 1133-1175 (1939). 
Yu. A. Samoilovich, System Analysis of Casting Crystallization [in Russian], Kiev (1983). 

CONFIGURATION OF THERMALLY LOADED COMPONENTS IN ELECTRONIC EQUIPMENT 

Go N. Dul'nev and A. O. Sergeev UDC 536.24 

Formulation of the Problem. One of the problems of electronic design is that of creat- 
ing an optimum configuration of components from the thermal viewpoint. By configuration we 
mean determination of the positions of the modules and components making up a piece of equip- 
ment, as well as determination of positions of individual topological elements upon a 
printed circuit card. Usually component configuration is decided from mounting and connec- 
tion considerations, but with increased component density and heat liberation ever more atten- 
tion must be given to thermal criteria. An optimum configuration results in reduction of 
component temperatures, leading to an increase in reliability of the equipment as a whole. 
Criteria for evaluating component placements are chosen from increased reliability considera- 
tions. Temperature dependences of failure rates have been determined experimentally and can 
be found in handbooks on reliability [i, 2]. These experimental dependences can be approxi- 
mated well by exponential functions [3, 4]; however to the accuracy required for practical 
purposes within a limited temperature range failure intensity can be represented as a linear 
function of temperature [5]: 

(t) = C~ + C.J, (1 )  

where CI, C 2 are approximation coefficients. Hence the criterion of reducing the net com- 
ponent failure rate leads to a need to reduce the net component temperature: 

min~l = min ~ 0- (2)  
i=i 

In a number of cases it becomes necessary to achieve temperature equalization by reconfigura- 
tion of components. This occurs when it is necessary to minimize temperature stresses in 
a module or decrease electrical imbalance in a circuit caused by differing temperatures of 
its components etc. [2, 6]. The temperature equalization requirement can be written in 
the form 

m i n ~ p z = m i n 2 ( 0 - - t )  ~-, t = I ~ 0 .  (3) 
n j = i  j = t  

We w i l i  now f o r m u l a t e  t h e  c o n f i g u r a t i o n  problem.  The e l e c t r i c a l  c o n n e c t i o n s  between 
t h e  components ,  t h e i r  d i m e n s i o n s ,  and t h e  h e a t  which t h e y  l i b e r a t e  a r e  known. A s e t  o f  l i m i t s  
i s  s p e c i f i e d  f o r  t e m p e r a t u r e ,  volume,  and c o s t .  I t  i s  t h e n  n e c e s s a r y  t o  c r e a t e  a c o n f i g u r a -  
t i o n  which will produce an extremum in the chosen criteria for the specified limitations. 
Two approaches to this problem are possible. In the first the problem is reduced to arrang- 
ing the components by some algorithm with the goal of minimizing the chosen thermal regime 
criteria, for example, in the form of Eq. (2) or (3), with limitations on the volume and 
location of elements. In the second approach the volume of the equipment is minimized with 

Leningrad Institute of Precision Mechanics and Optics. 
cheskii Zhurnal, Vol. 52, No. 3, pp. 491-495, March, 1987. 
ber 2, 1985. 

Translated from Inzhenerno-Fizi- 
Original article submitted Decem- 

0022-0841/87/5203-0365512.50 �9 1987 Plenum Publishing Corporation 365 


